Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Supervised-unsupervised Method on Image Topic Visualization with Convolutional Neural Network and LDA (1703.05243v2)

Published 15 Mar 2017 in cs.CV

Abstract: Given the progress in image recognition with recent data driven paradigms, it's still expensive to manually label a large training data to fit a convolutional neural network (CNN) model. This paper proposes a hybrid supervised-unsupervised method combining a pre-trained AlexNet with Latent Dirichlet Allocation (LDA) to extract image topics from both an unlabeled life-logging dataset and the COCO dataset. We generate the bag-of-words representations of an egocentric dataset from the softmax layer of AlexNet and use LDA to visualize the subject's living genre with duplicated images. We use a subset of COCO on 4 categories as ground truth, and define consistent rate to quantitatively analyze the performance of the method, it achieves 84% for consistent rate on average comparing to 18.75% from a raw CNN model. The method is capable of detecting false labels and multi-labels from COCO dataset. For scalability test, parallelization experiments are conducted with Harp-LDA on a Intel Knights Landing cluster: to extract 1,000 topic assignments for 241,035 COCO images, it takes 10 minutes with 60 threads.

Summary

We haven't generated a summary for this paper yet.