Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

The Stochastic Container Relocation Problem (1703.04769v2)

Published 14 Mar 2017 in cs.DS

Abstract: The Container Relocation Problem (CRP) is concerned with finding a sequence of moves of containers that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. However, the assumption of knowing the full retrieval order of containers is particularly unrealistic in real operations. This paper studies the stochastic CRP (SCRP), which relaxes this assumption. A new multi-stage stochastic model, called the batch model, is introduced, motivated, and compared with an existing model (the online model). The two main contributions are an optimal algorithm called Pruning-Best-First-Search (PBFS) and a randomized approximate algorithm called PBFS-Approximate with a bounded average error. Both algorithms, applicable in the batch and online models, are based on a new family of lower bounds for which we show some theoretical properties. Moreover, we introduce two new heuristics outperforming the best existing heuristics. Algorithms, bounds and heuristics are tested in an extensive computational section. Finally, based on strong computational evidence, we conjecture the optimality of the "Leveling" heuristic in a special "no information" case, where at any retrieval stage, any of the remaining containers is equally likely to be retrieved next.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.