Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sample Efficient Feature Selection for Factored MDPs (1703.03454v1)

Published 9 Mar 2017 in cs.LG and stat.ML

Abstract: In reinforcement learning, the state of the real world is often represented by feature vectors. However, not all of the features may be pertinent for solving the current task. We propose Feature Selection Explore and Exploit (FS-EE), an algorithm that automatically selects the necessary features while learning a Factored Markov Decision Process, and prove that under mild assumptions, its sample complexity scales with the in-degree of the dynamics of just the necessary features, rather than the in-degree of all features. This can result in a much better sample complexity when the in-degree of the necessary features is smaller than the in-degree of all features.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.