Papers
Topics
Authors
Recent
Search
2000 character limit reached

Feature Selection Using Reinforcement Learning

Published 23 Jan 2021 in cs.LG and stat.ML | (2101.09460v1)

Abstract: With the decreasing cost of data collection, the space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially. Therefore, identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model. In addition, identifying such features is critical for interpretability, prediction accuracy and optimal computation cost. While statistical methods such as subset selection, shrinkage, dimensionality reduction have been applied in selecting the best set of features, some other approaches in literature have approached feature selection task as a search problem where each state in the search space is a possible feature subset. In this paper, we solved the feature selection problem using Reinforcement Learning. Formulating the state space as a Markov Decision Process (MDP), we used Temporal Difference (TD) algorithm to select the best subset of features. Each state was evaluated using a robust and low cost classifier algorithm which could handle any non-linearities in the dataset.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.