Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidential supplier selection based on interval data fusion (1703.01971v1)

Published 6 Mar 2017 in cs.AI

Abstract: Supplier selection is a typical multi-criteria decision making (MCDM) problem and lots of uncertain information exist inevitably. To address this issue, a new method was proposed based on interval data fusion. Our method follows the original way to generate classical basic probability assignment(BPA) determined by the distance among the evidences. However, the weights of criteria are kept as interval numbers to generate interval BPAs and do the fusion of interval BPAs. Finally, the order is ranked and the decision is made according to the obtained interval BPAs. In this paper, a numerical example of supplier selection is applied to verify the feasibility and validity of our method. The new method is presented aiming at solving multiple-criteria decision-making problems in which the weights of criteria or experts are described in fuzzy data like linguistic terms or interval data.

Citations (11)

Summary

We haven't generated a summary for this paper yet.