Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Bayesian Verification under Model Uncertainty (1702.08725v1)

Published 28 Feb 2017 in cs.SE and cs.AI

Abstract: Machine learning enables systems to build and update domain models based on runtime observations. In this paper, we study statistical model checking and runtime verification for systems with this ability. Two challenges arise: (1) Models built from limited runtime data yield uncertainty to be dealt with. (2) There is no definition of satisfaction w.r.t. uncertain hypotheses. We propose such a definition of subjective satisfaction based on recently introduced satisfaction functions. We also propose the BV algorithm as a Bayesian solution to runtime verification of subjective satisfaction under model uncertainty. BV provides user-definable stochastic bounds for type I and II errors. We discuss empirical results from an example application to illustrate our ideas.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.