Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Maximally Predictive Features and Their Dimensions (1702.08565v1)

Published 27 Feb 2017 in cond-mat.stat-mech, cs.IT, math.IT, nlin.CD, and stat.ML

Abstract: Scientific explanation often requires inferring maximally predictive features from a given data set. Unfortunately, the collection of minimal maximally predictive features for most stochastic processes is uncountably infinite. In such cases, one compromises and instead seeks nearly maximally predictive features. Here, we derive upper-bounds on the rates at which the number and the coding cost of nearly maximally predictive features scales with desired predictive power. The rates are determined by the fractal dimensions of a process' mixed-state distribution. These results, in turn, show how widely-used finite-order Markov models can fail as predictors and that mixed-state predictive features offer a substantial improvement.

Citations (26)

Summary

We haven't generated a summary for this paper yet.