Quanta of Space-Time and Axiomatization of Physics
Abstract: We consider Hilbert's sixth problem on the axiomatization of physics starting with a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. The two sided version of the commutation relation in dimension 4 implies volume quantization and determines a noncommutative space which is a tensor product of continuous and discrete spaces. This noncommutative space predicts the full structure of a unified model of all particle interactions based on Pati-Salam symmetries or, as a special case, the Standard Model. We study implications of this quantization condition on Particle Physics, General Relativity, the cosmological constant and dark matter. We demonstrate that, with little input, noncommutative geometry gives a compelling and attractive picture about the nature and structure of space-time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.