Papers
Topics
Authors
Recent
2000 character limit reached

The role of quantum correlations in Cop and Robber game

Published 25 Feb 2017 in quant-ph, cs.DM, and cs.GT | (1702.07932v2)

Abstract: We introduce and study quantized versions of Cop and Robber game. We achieve this by using graph-preserving quantum operations, which are the quantum analogues of stochastic operations preserving the graph. We provide the tight bound for the number of operations required to reach the given state. By extending them to the controlled operations, we define a quantum-controlled Cop and Robber game, which expands the classical Cop and Robber game, as well as the classically controlled quantum Cop and Robber game. In contrast to the typical scheme for introducing quantum games, we assume that both parties can utilise full information about the opponent's strategy. We show that the utilisation of the full knowledge about the opponent's state does not provide the advantage. Moreover, the chances of catching the Robber decrease for classical cop-win graphs. This result does not depend on the chosen model of evolution. On the other hand, the possibility to execute controlled quantum operations allows catching the Robber on almost all classical cop-win graphs. By this, we demonstrate that it is necessary to enrich the structure of correlations between the players' systems to provide a non-trivial quantized Cop and Robber game. Thus the quantum controlled operations offer a significant advantage over the classically controlled quantum operations.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.