Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dirichlet-vMF Mixture Model (1702.07495v1)

Published 24 Feb 2017 in cs.CL

Abstract: This document is about the multi-document Von-Mises-Fisher mixture model with a Dirichlet prior, referred to as VMFMix. VMFMix is analogous to Latent Dirichlet Allocation (LDA) in that they can capture the co-occurrence patterns acorss multiple documents. The difference is that in VMFMix, the topic-word distribution is defined on a continuous n-dimensional hypersphere. Hence VMFMix is used to derive topic embeddings, i.e., representative vectors, from multiple sets of embedding vectors. An efficient Variational Expectation-Maximization inference algorithm is derived. The performance of VMFMix on two document classification tasks is reported, with some preliminary analysis.

Summary

We haven't generated a summary for this paper yet.