Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rotting Bandits (1702.07274v4)

Published 23 Feb 2017 in stat.ML and cs.LG

Abstract: The Multi-Armed Bandits (MAB) framework highlights the tension between acquiring new knowledge (Exploration) and leveraging available knowledge (Exploitation). In the classical MAB problem, a decision maker must choose an arm at each time step, upon which she receives a reward. The decision maker's objective is to maximize her cumulative expected reward over the time horizon. The MAB problem has been studied extensively, specifically under the assumption of the arms' rewards distributions being stationary, or quasi-stationary, over time. We consider a variant of the MAB framework, which we termed Rotting Bandits, where each arm's expected reward decays as a function of the number of times it has been pulled. We are motivated by many real-world scenarios such as online advertising, content recommendation, crowdsourcing, and more. We present algorithms, accompanied by simulations, and derive theoretical guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nir Levine (16 papers)
  2. Koby Crammer (22 papers)
  3. Shie Mannor (228 papers)
Citations (97)