Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Chained Deep Features and Classifiers for Cascade in Object Detection (1702.07054v1)

Published 23 Feb 2017 in cs.CV

Abstract: Cascade is a widely used approach that rejects obvious negative samples at early stages for learning better classifier and faster inference. This paper presents chained cascade network (CC-Net). In this CC-Net, the cascaded classifier at a stage is aided by the classification scores in previous stages. Feature chaining is further proposed so that the feature learning for the current cascade stage uses the features in previous stages as the prior information. The chained ConvNet features and classifiers of multiple stages are jointly learned in an end-to-end network. In this way, features and classifiers at latter stages handle more difficult samples with the help of features and classifiers in previous stages. It yields consistent boost in detection performance on benchmarks like PASCAL VOC 2007 and ImageNet. Combined with better region proposal, CC-Net leads to state-of-the-art result of 81.1% mAP on PASCAL VOC 2007.

Citations (19)

Summary

We haven't generated a summary for this paper yet.