Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bad Primes in Computational Algebraic Geometry

Published 22 Feb 2017 in math.AG and cs.SC | (1702.06920v1)

Abstract: Computations over the rational numbers often suffer from intermediate coefficient swell. One solution to this problem is to apply the given algorithm modulo a number of primes and then lift the modular results to the rationals. This method is guaranteed to work if we use a sufficiently large set of good primes. In many applications, however, there is no efficient way of excluding bad primes. In this note, we describe a technique for rational reconstruction which will nevertheless return the correct result, provided the number of good primes in the selected set of primes is large enough. We give a number of illustrating examples which are implemented using the computer algebra system Singular and the programming language Julia. We discuss applications of our technique in computational algebraic geometry.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.