Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation (1702.06435v3)

Published 21 Feb 2017 in cs.IT, math.IT, and stat.ML

Abstract: We study a spectral initialization method that serves a key role in recent work on estimating signals in nonconvex settings. Previous analysis of this method focuses on the phase retrieval problem and provides only performance bounds. In this paper, we consider arbitrary generalized linear sensing models and present a precise asymptotic characterization of the performance of the method in the high-dimensional limit. Our analysis also reveals a phase transition phenomenon that depends on the ratio between the number of samples and the signal dimension. When the ratio is below a minimum threshold, the estimates given by the spectral method are no better than random guesses drawn from a uniform distribution on the hypersphere, thus carrying no information; above a maximum threshold, the estimates become increasingly aligned with the target signal. The computational complexity of the method, as measured by the spectral gap, is also markedly different in the two phases. Worked examples and numerical results are provided to illustrate and verify the analytical predictions. In particular, simulations show that our asymptotic formulas provide accurate predictions for the actual performance of the spectral method even at moderate signal dimensions.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.