Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Attention-Based Deep Net for Learning to Rank (1702.06106v3)

Published 20 Feb 2017 in cs.LG

Abstract: In information retrieval, learning to rank constructs a machine-based ranking model which given a query, sorts the search results by their degree of relevance or importance to the query. Neural networks have been successfully applied to this problem, and in this paper, we propose an attention-based deep neural network which better incorporates different embeddings of the queries and search results with an attention-based mechanism. This model also applies a decoder mechanism to learn the ranks of the search results in a listwise fashion. The embeddings are trained with convolutional neural networks or the word2vec model. We demonstrate the performance of this model with image retrieval and text querying data sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Baiyang Wang (5 papers)
  2. Diego Klabjan (111 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.