Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mining Behavioral Patterns from Millions of Android Users

Published 14 Feb 2017 in cs.CY and cs.SE | (1702.05060v2)

Abstract: The prevalence of smart mobile devices has promoted the popularity of mobile applications (a.k.a. apps). Supporting mobility has become a promising trend in software engineering research. This article presents an empirical study of behavioral service profiles collected from millions of users whose devices are deployed with Wandoujia, a leading Android app store service in China. The dataset of Wandoujia service profiles consists of two kinds of user behavioral data from using 0.28 million free Android apps, including (1) app management activities (i.e., downloading, updating, and uninstalling apps) from over 17 million unique users and (2) app network usage from over 6 million unique users. We explore multiple aspects of such behavioral data and present patterns of app usage. Based on the findings as well as derived knowledge, we also suggest some new open opportunities and challenges that can be explored by the research community, including app development, deployment, delivery, revenue, etc.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.