Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectra of Jacobi operators via connection coefficient matrices

Published 10 Feb 2017 in math.SP | (1702.03095v3)

Abstract: We address the computational spectral theory of Jacobi operators that are compact perturbations of the free Jacobi operator via the asymptotic properties of a connection coefficient matrix. In particular, for finite-rank perturbation we show that the computation of the spectrum can be reduced to a polynomial root finding problem, from a polynomial that is derived explicitly from the entries of a connection coefficient matrix. A formula for the spectral measure of the operator is also derived explicitly from these entries. The analysis is extended to trace-class perturbations. We address issues of computability in the framework of the Solvability Complexity Index, proving that the spectrum of compact perturbations of the free Jacobi operator is computable in finite time with guaranteed error control in the Hausdorff metric on sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.