Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

A formula for eigenvalues of Jacobi matrices with a reflection symmetry (1510.01860v3)

Published 7 Oct 2015 in math-ph and math.MP

Abstract: The spectral properties of two special classes of Jacobi operators are studied. For the first class represented by the $2M$-dimensional real Jacobi matrices whose entries are symmetric with respect to the secondary diagonal, a new polynomial identity relating the eigenvalues of such matrices with their matrix { entries} is obtained. In the limit $M\to\infty$ this identity induces some requirements, which should satisfy the scattering data of the resulting infinite-dimensional Jacobi operator in the half-line, which super- and sub-diagonal matrix elements are equal to -1. We obtain such requirements in the simplest case of the discrete Schr\"odinger operator acting in ${l}2( \mathbb{N})$, which does not have bound and semi-bound states, and which potential has a compact support.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)