Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning (1702.02680v1)

Published 9 Feb 2017 in cs.CV and math.NA

Abstract: Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear approximation of manifold dimension. This regularization is less restricted than the global low-rank regularization, and thus enjoy more flexibility to handle data with nonlinear structures. As applications, we demonstrate the proposed regularization to classical inverse problems in image sciences and data sciences including image inpainting, image super-resolution, X-ray computer tomography (CT) image reconstruction and semi-supervised learning. We conduct intensive numerical experiments in several image restoration problems and a semi-supervised learning problem of classifying handwritten digits using the MINST data. Our numerical tests demonstrate the effectiveness of the proposed methods and illustrate that the new regularization methods produce outstanding results by comparing with many existing methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.