Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CT Image Reconstruction in a Low Dimensional Manifold (1704.04825v1)

Published 16 Apr 2017 in physics.med-ph and cs.CV

Abstract: Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruction method based on the prior knowledge of the low-dimensional manifold of CT image. Using the clinical raw projection data from GE clinic, we conduct comparisons for the CT image reconstruction among the proposed method, the simultaneous algebraic reconstruction technique (SART) with the total variation (TV) regularization, and the filtered back projection (FBP) method. Results show that the proposed method can successfully recover structural details of an imaging object, and achieve higher spatial and contrast resolution of the reconstructed image than counterparts of FBP and SART with TV.

Summary

We haven't generated a summary for this paper yet.