Papers
Topics
Authors
Recent
2000 character limit reached

Hyperbolic evolution equations, Lorentzian holonomy, and Riemannian generalised Killing spinors

Published 7 Feb 2017 in math.DG and math.AP | (1702.01951v2)

Abstract: We prove that the Cauchy problem for parallel null vector fields on smooth Lorentzian manifolds is well posed. The proof is based on the derivation and analysis of suitable hyperbolic evolution equations given in terms of the Ricci tensor and other geometric objects. Moreover, we classify Riemannian manifolds satisfying the constraint conditions for this Cauchy problem. It is then possible to characterise certain holonomy reductions of globally hyperbolic manifolds with parallel null vector in terms of flow equations for Riemannian special holonomy metrics. For exceptional holonomy groups these flow equations have been investigated in the literature before in other contexts. As an application, the results provide a classification of Riemannian manifolds admitting imaginary generalised Killing spinors. We will also give new local normal forms for Lorentzian metrics with parallel null spinor in any dimension.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.