Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prediction of Kidney Function from Biopsy Images Using Convolutional Neural Networks

Published 6 Feb 2017 in stat.ML and q-bio.QM | (1702.01816v1)

Abstract: A Convolutional Neural Network was used to predict kidney function in patients with chronic kidney disease from high-resolution digital pathology scans of their kidney biopsies. Kidney biopsies were taken from participants of the NEPTUNE study, a longitudinal cohort study whose goal is to set up infrastructure for observing the evolution of 3 forms of idiopathic nephrotic syndrome, including developing predictors for progression of kidney disease. The knowledge of future kidney function is desirable as it can identify high-risk patients and influence treatment decisions, reducing the likelihood of irreversible kidney decline.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.