Papers
Topics
Authors
Recent
2000 character limit reached

Towards Unsupervised Weed Scouting for Agricultural Robotics

Published 4 Feb 2017 in cs.CV | (1702.01247v2)

Abstract: Weed scouting is an important part of modern integrated weed management but can be time consuming and sparse when performed manually. Automated weed scouting and weed destruction has typically been performed using classification systems able to classify a set group of species known a priori. This greatly limits deployability as classification systems must be retrained for any field with a different set of weed species present within them. In order to overcome this limitation, this paper works towards developing a clustering approach to weed scouting which can be utilized in any field without the need for prior species knowledge. We demonstrate our system using challenging data collected in the field from an agricultural robotics platform. We show that considerable improvements can be made by (i) learning low-dimensional (bottleneck) features using a deep convolutional neural network to represent plants in general and (ii) tying views of the same area (plant) together. Deploying this algorithm on in-field data collected by AgBotII, we are able to successfully cluster cotton plants from grasses without prior knowledge or training for the specific plants in the field.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.