Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeded Laplaican: An Eigenfunction Solution for Scribble Based Interactive Image Segmentation (1702.00882v2)

Published 3 Feb 2017 in cs.CV

Abstract: In this paper, we cast the scribble-based interactive image segmentation as a semi-supervised learning problem. Our novel approach alleviates the need to solve an expensive generalized eigenvector problem by approximating the eigenvectors using efficiently computed eigenfunctions. The smoothness operator defined on feature densities at the limit n tends to infinity recovers the exact eigenvectors of the graph Laplacian, where n is the number of nodes in the graph. To further reduce the computational complexity without scarifying our accuracy, we select pivots pixels from user annotations. In our experiments, we evaluate our approach using both human scribble and "robot user" annotations to guide the foreground/background segmentation. We developed a new unbiased collection of five annotated images datasets to standardize the evaluation procedure for any scribble-based segmentation method. We experimented with several variations, including different feature vectors, pivot count and the number of eigenvectors. Experiments are carried out on datasets that contain a wide variety of natural images. We achieve better qualitative and quantitative results compared to state-of-the-art interactive segmentation algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.