Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Compose with Professional Photographs on the Web (1702.00503v2)

Published 1 Feb 2017 in cs.CV

Abstract: Photo composition is an important factor affecting the aesthetics in photography. However, it is a highly challenging task to model the aesthetic properties of good compositions due to the lack of globally applicable rules to the wide variety of photographic styles. Inspired by the thinking process of photo taking, we formulate the photo composition problem as a view finding process which successively examines pairs of views and determines their aesthetic preferences. We further exploit the rich professional photographs on the web to mine unlimited high-quality ranking samples and demonstrate that an aesthetics-aware deep ranking network can be trained without explicitly modeling any photographic rules. The resulting model is simple and effective in terms of its architectural design and data sampling method. It is also generic since it naturally learns any photographic rules implicitly encoded in professional photographs. The experiments show that the proposed view finding network achieves state-of-the-art performance with sliding window search strategy on two image cropping datasets.

Citations (85)

Summary

We haven't generated a summary for this paper yet.