Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal scale selection in time-causal scale space (1701.05088v1)

Published 9 Jan 2017 in cs.CV

Abstract: When designing and developing scale selection mechanisms for generating hypotheses about characteristic scales in signals, it is essential that the selected scale levels reflect the extent of the underlying structures in the signal. This paper presents a theory and in-depth theoretical analysis about the scale selection properties of methods for automatically selecting local temporal scales in time-dependent signals based on local extrema over temporal scales of scale-normalized temporal derivative responses. Specifically, this paper develops a novel theoretical framework for performing such temporal scale selection over a time-causal and time-recursive temporal domain as is necessary when processing continuous video or audio streams in real time or when modelling biological perception. For a recently developed time-causal and time-recursive scale-space concept defined by convolution with a scale-invariant limit kernel, we show that it is possible to transfer a large number of the desirable scale selection properties that hold for the Gaussian scale-space concept over a non-causal temporal domain to this temporal scale-space concept over a truly time-causal domain. Specifically, we show that for this temporal scale-space concept, it is possible to achieve true temporal scale invariance although the temporal scale levels have to be discrete, which is a novel theoretical construction.

Citations (11)

Summary

We haven't generated a summary for this paper yet.