Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Community Question Answering Platforms vs. Twitter for Predicting Characteristics of Urban Neighbourhoods (1701.04653v1)

Published 17 Jan 2017 in cs.CL and cs.SI

Abstract: In this paper, we investigate whether text from a Community Question Answering (QA) platform can be used to predict and describe real-world attributes. We experiment with predicting a wide range of 62 demographic attributes for neighbourhoods of London. We use the text from QA platform of Yahoo! Answers and compare our results to the ones obtained from Twitter microblogs. Outcomes show that the correlation between the predicted demographic attributes using text from Yahoo! Answers discussions and the observed demographic attributes can reach an average Pearson correlation coefficient of \r{ho} = 0.54, slightly higher than the predictions obtained using Twitter data. Our qualitative analysis indicates that there is semantic relatedness between the highest correlated terms extracted from both datasets and their relative demographic attributes. Furthermore, the correlations highlight the different natures of the information contained in Yahoo! Answers and Twitter. While the former seems to offer a more encyclopedic content, the latter provides information related to the current sociocultural aspects or phenomena.

Citations (3)

Summary

We haven't generated a summary for this paper yet.