Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To Boost or Not to Boost? On the Limits of Boosted Trees for Object Detection (1701.01692v1)

Published 6 Jan 2017 in cs.CV

Abstract: We aim to study the modeling limitations of the commonly employed boosted decision trees classifier. Inspired by the success of large, data-hungry visual recognition models (e.g. deep convolutional neural networks), this paper focuses on the relationship between modeling capacity of the weak learners, dataset size, and dataset properties. A set of novel experiments on the Caltech Pedestrian Detection benchmark results in the best known performance among non-CNN techniques while operating at fast run-time speed. Furthermore, the performance is on par with deep architectures (9.71% log-average miss rate), while using only HOG+LUV channels as features. The conclusions from this study are shown to generalize over different object detection domains as demonstrated on the FDDB face detection benchmark (93.37% accuracy). Despite the impressive performance, this study reveals the limited modeling capacity of the common boosted trees model, motivating a need for architectural changes in order to compete with multi-level and very deep architectures.

Citations (127)

Summary

We haven't generated a summary for this paper yet.