Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Numerically stable online estimation of variance in particle filters (1701.01001v1)

Published 4 Jan 2017 in stat.ME

Abstract: This paper discusses variance estimation in sequential Monte Carlo methods, alternatively termed particle filters. The variance estimator that we propose is a natural modification of that suggested by H. P. Chan and T. L. Lai [A general theory of particle filters in hidden Markov models and some applications. Ann. Statist., 41(6):2877-2904, 2013], which allows the variance to be estimated in a single run of the particle filter by tracing the genealogical history of the particles. However, due particle lineage degeneracy, the estimator of the mentioned work becomes numerically unstable as the number of sequential particle updates increases. Thus, by tracing only a part of the particles' genealogy rather than the full one, our estimator gains long-term numerical stability at the cost of a bias. The scope of the genealogical tracing is regulated by a lag, and under mild, easily checked model assumptions, we prove that the bias tends to zero geometrically fast as the lag increases. As confirmed by our numerical results, this allows the bias to be tightly controlled also for moderate particle sample sizes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.