Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient parameter inference in general hidden Markov models using the filter derivatives (1601.05568v2)

Published 21 Jan 2016 in stat.CO

Abstract: Estimating online the parameters of general state-space hidden Markov models is a topic of importance in many scientific and engineering disciplines. In this paper we present an online parameter estimation algorithm obtained by casting our recently proposed particle-based, rapid incremental smoother (PaRIS) into the framework of recursive maximum likelihood estimation for general hidden Markov models. Previous such particle implementations suffer from either quadratic complexity in the number of particles or from the well-known degeneracy of the genealogical particle paths. By using the computational efficient and numerically stable PaRIS algorithm for estimating the needed prediction filter derivatives we obtain a fast algorithm with a computational complexity that grows only linearly with the number of particles. The efficiency and stability of the proposed algorithm are illustrated in a simulation study.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.