Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Partially Recursive Acceptance Rejection (1701.00821v1)

Published 31 Dec 2016 in cs.DS and math.PR

Abstract: Generating random variates from high-dimensional distributions is often done approximately using Markov chain Monte Carlo. In certain cases, perfect simulation algorithms exist that allow one to draw exactly from the stationary distribution, but most require $O(n \ln(n))$ time, where $n$ measures the size of the input. In this work a new protocol for creating perfect simulation algorithms that runs in $O(n)$ time for a wider range of parameters on several models (such as Strauss, Ising, and random cluster) than was known previously. This work represents an extension of the popping algorithms due to Wilson.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)