Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Random partitions of the plane via Poissonian coloring, and a self-similar process of coalescing planar partitions (1701.00131v1)

Published 31 Dec 2016 in math.PR

Abstract: Plant differently colored points in the plane, then let random points ("Poisson rain") fall, and give each new point the color of the nearest existing point. Previous investigation and simulations strongly suggest that the colored regions converge (in some sense) to a random partition of the plane. We prove a weak version of this, showing that normalized empirical measures converge to Lebesgue measures on a random partition into measurable sets. Topological properties remain an open problem. In the course of the proof, which heavily exploits time-reversals, we encounter a novel self-similar process of coalescing planar partitions. In this process, sets $A(z)$ in the partition are associated with Poisson random points $z$, and the dynamics are as follows. Points are deleted randomly at rate $1$, when $z$ is deleted, its set $A(z)$ is adjoined to the set $A(z\prime)$ of the nearest other point $z\prime$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)