Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes (1612.09097v1)

Published 29 Dec 2016 in math.NA, cs.NA, and math.AP

Abstract: This paper introduces optimally-blended quadrature rules for isogeometric analysis and analyzes the numerical dispersion of the resulting discretizations. To quantify the approximation errors when we modify the inner products, we generalize the Pythagorean eigenvalue theorem of Strang and Fix. The proposed blended quadrature rules have advantages over alternative integration rules for isogeometric analysis on uniform and non-uniform meshes as well as for different polynomial orders and continuity of the basis. The optimally-blended schemes improve the convergence rate of the method by two orders with respect to the fully-integrated Galerkin method. The proposed technique increases the accuracy and robustness of isogeometric analysis for wave propagation problems.

Citations (49)

Summary

We haven't generated a summary for this paper yet.