Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomaly Detection Using the Knowledge-based Temporal Abstraction Method (1612.04804v1)

Published 14 Dec 2016 in cs.LG and cs.AI

Abstract: The rapid growth in stored time-oriented data necessitates the development of new methods for handling, processing, and interpreting large amounts of temporal data. One important example of such processing is detecting anomalies in time-oriented data. The Knowledge-Based Temporal Abstraction method was previously proposed for intelligent interpretation of temporal data based on predefined domain knowledge. In this study we propose a framework that integrates the KBTA method with a temporal pattern mining process for anomaly detection. According to the proposed method a temporal pattern mining process is applied on a dataset of basic temporal abstraction database in order to extract patterns representing normal behavior. These patterns are then analyzed in order to identify abnormal time periods characterized by a significantly small number of normal patterns. The proposed approach was demonstrated using a dataset collected from a real server.

Citations (2)

Summary

We haven't generated a summary for this paper yet.