Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Architecture for Deep, Hierarchical Generative Models (1612.04739v1)

Published 8 Dec 2016 in cs.LG

Abstract: We present an architecture which lets us train deep, directed generative models with many layers of latent variables. We include deterministic paths between all latent variables and the generated output, and provide a richer set of connections between computations for inference and generation, which enables more effective communication of information throughout the model during training. To improve performance on natural images, we incorporate a lightweight autoregressive model in the reconstruction distribution. These techniques permit end-to-end training of models with 10+ layers of latent variables. Experiments show that our approach achieves state-of-the-art performance on standard image modelling benchmarks, can expose latent class structure in the absence of label information, and can provide convincing imputations of occluded regions in natural images.

Citations (53)

Summary

We haven't generated a summary for this paper yet.