2000 character limit reached
Search Personalization with Embeddings (1612.03597v1)
Published 12 Dec 2016 in cs.IR and cs.CL
Abstract: Recent research has shown that the performance of search personalization depends on the richness of user profiles which normally represent the user's topical interests. In this paper, we propose a new embedding approach to learning user profiles, where users are embedded on a topical interest space. We then directly utilize the user profiles for search personalization. Experiments on query logs from a major commercial web search engine demonstrate that our embedding approach improves the performance of the search engine and also achieves better search performance than other strong baselines.