Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Technical Report: A Generalized Matching Pursuit Approach for Graph-Structured Sparsity (1612.03364v1)

Published 11 Dec 2016 in cs.LG, cs.AI, and stat.ML

Abstract: Sparsity-constrained optimization is an important and challenging problem that has wide applicability in data mining, machine learning, and statistics. In this paper, we focus on sparsity-constrained optimization in cases where the cost function is a general nonlinear function and, in particular, the sparsity constraint is defined by a graph-structured sparsity model. Existing methods explore this problem in the context of sparse estimation in linear models. To the best of our knowledge, this is the first work to present an efficient approximation algorithm, namely, Graph-structured Matching Pursuit (Graph-Mp), to optimize a general nonlinear function subject to graph-structured constraints. We prove that our algorithm enjoys the strong guarantees analogous to those designed for linear models in terms of convergence rate and approximation accuracy. As a case study, we specialize Graph-Mp to optimize a number of well-known graph scan statistic models for the connected subgraph detection task, and empirical evidence demonstrates that our general algorithm performs superior over state-of-the-art methods that are designed specifically for the task of connected subgraph detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Feng Chen (261 papers)
  2. Baojian Zhou (21 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.