Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Geometric Decomposition of Feed Forward Neural Networks (1612.02522v1)

Published 8 Dec 2016 in cs.NE and math.CO

Abstract: There have been several attempts to mathematically understand neural networks and many more from biological and computational perspectives. The field has exploded in the last decade, yet neural networks are still treated much like a black box. In this work we describe a structure that is inherent to a feed forward neural network. This will provide a framework for future work on neural networks to improve training algorithms, compute the homology of the network, and other applications. Our approach takes a more geometric point of view and is unlike other attempts to mathematically understand neural networks that rely on a functional perspective.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.