Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the geometry of the countably branching diamond graphs (1612.01984v1)

Published 6 Dec 2016 in math.MG, math.CO, and math.FA

Abstract: In this article, the bi-Lipschitz embeddability of the sequence of countably branching diamond graphs $(D_k\omega)_{k\in\mathbb{N}}$ is investigated. In particular it is shown that for every $\varepsilon>0$ and $k\in\mathbb{N}$, $D_k\omega$ embeds bi-Lipschiztly with distortion at most $6(1+\varepsilon)$ into any reflexive Banach space with an unconditional asymptotic structure that does not admit an equivalent asymptotically uniformly convex norm. On the other hand it is shown that the sequence $(D_k\omega)_{k\in\mathbb{N}}$ does not admit an equi-bi-Lipschitz embedding into any Banach space that has an equivalent asymptotically midpoint uniformly convex norm. Combining these two results one obtains a metric characterization in terms of graph preclusion of the class of asymptotically uniformly convexifiable spaces, within the class of separable reflexive Banach spaces with an unconditional asymptotic structure. Applications to bi-Lipschitz embeddability into $L_p$-spaces and to some problems in renorming theory are also discussed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.