Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster-Wise Ratio Tests for Fast Camera Localization (1612.01689v2)

Published 6 Dec 2016 in cs.CV

Abstract: Feature point matching for camera localization suffers from scalability problems. Even when feature descriptors associated with 3D scene points are locally unique, as coverage grows, similar or repeated features become increasingly common. As a result, the standard distance ratio-test used to identify reliable image feature points is overly restrictive and rejects many good candidate matches. We propose a simple coarse-to-fine strategy that uses conservative approximations to robust local ratio-tests that can be computed efficiently using global approximate k-nearest neighbor search. We treat these forward matches as votes in camera pose space and use them to prioritize back-matching within candidate camera pose clusters, exploiting feature co-visibility captured by clustering the 3D model camera pose graph. This approach achieves state-of-the-art camera localization results on a variety of popular benchmarks, outperforming several methods that use more complicated data structures and that make more restrictive assumptions on camera pose. We also carry out diagnostic analyses on a difficult test dataset containing globally repetitive structure that suggest our approach successfully adapts to the challenges of large-scale image localization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Raúl Díaz (2 papers)
  2. Charless C. Fowlkes (20 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.