Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

We used Neural Networks to Detect Clickbaits: You won't believe what happened Next! (1612.01340v2)

Published 5 Dec 2016 in cs.CL and cs.IR

Abstract: Online content publishers often use catchy headlines for their articles in order to attract users to their websites. These headlines, popularly known as clickbaits, exploit a user's curiosity gap and lure them to click on links that often disappoint them. Existing methods for automatically detecting clickbaits rely on heavy feature engineering and domain knowledge. Here, we introduce a neural network architecture based on Recurrent Neural Networks for detecting clickbaits. Our model relies on distributed word representations learned from a large unannotated corpora, and character embeddings learned via Convolutional Neural Networks. Experimental results on a dataset of news headlines show that our model outperforms existing techniques for clickbait detection with an accuracy of 0.98 with F1-score of 0.98 and ROC-AUC of 0.99.

Citations (118)

Summary

We haven't generated a summary for this paper yet.