Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated assessment of non-native learner essays: Investigating the role of linguistic features (1612.00729v1)

Published 2 Dec 2016 in cs.CL

Abstract: Automatic essay scoring (AES) refers to the process of scoring free text responses to given prompts, considering human grader scores as the gold standard. Writing such essays is an essential component of many language and aptitude exams. Hence, AES became an active and established area of research, and there are many proprietary systems used in real life applications today. However, not much is known about which specific linguistic features are useful for prediction and how much of this is consistent across datasets. This article addresses that by exploring the role of various linguistic features in automatic essay scoring using two publicly available datasets of non-native English essays written in test taking scenarios. The linguistic properties are modeled by encoding lexical, syntactic, discourse and error types of learner language in the feature set. Predictive models are then developed using these features on both datasets and the most predictive features are compared. While the results show that the feature set used results in good predictive models with both datasets, the question "what are the most predictive features?" has a different answer for each dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Sowmya Vajjala (20 papers)
Citations (87)

Summary

We haven't generated a summary for this paper yet.