Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudorandomness of the Ostrowski sum-of-digits function (1611.03043v1)

Published 9 Nov 2016 in math.NT

Abstract: For an irrational $\alpha\in(0,1)$, we investigate the Ostrowski sum-of-digits function $\sigma_\alpha$. For $\alpha$ having bounded partial quotients and $\vartheta\in\mathbb R\setminus\mathbb Z$, we prove that the function $g:n\mapsto \mathrm e(\vartheta \sigma_\alpha(n))$, where $\mathrm e(x)=\mathrm e{2\pi i x}$, is pseudorandom in the following sense: for all $r\in\mathbb N$ the limit [\gamma_r= \lim_{N\rightarrow\infty}\frac 1N\sum_{0\leq n<N}g(n+r)\overline{g(n)} ] exists and we have [\lim_{R\rightarrow\infty}\frac 1R\sum_{0\leq r<R}\bigl\lvert \gamma_r\bigr\rvert2=0.]

Summary

We haven't generated a summary for this paper yet.