Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structure of the optimal path to a fluctuation

Published 8 Nov 2016 in cond-mat.stat-mech, cond-mat.mes-hall, cond-mat.soft, math-ph, and math.MP | (1611.02500v2)

Abstract: Macroscopic fluctuations have become an essential tool to understand physics far from equilibrium due to the link between their statistics and nonequilibrium ensembles. The optimal path leading to a fluctuation encodes key information on this problem, shedding light on e.g. the physics behind the enhanced probability of rare events out of equilibrium, the possibility of dynamic phase transitions and new symmetries. This makes the understanding of the properties of these optimal paths a central issue. Here we derive a fundamental relation which strongly constraints the architecture of these optimal paths for general $d$-dimensional nonequilibrium diffusive systems, and implies a non-trivial structure for the dominant current vector fields. Interestingly, this general relation (which encompasses and explains previous results) makes manifest the spatio-temporal non-locality of the current statistics and the associated optimal trajectories.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.