Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids (1610.09945v6)

Published 31 Oct 2016 in math.DS and math.OA

Abstract: We give conditions for when continuous orbit equivalence of one-sided shift spaces implies flow equivalence of the associated two-sided shift spaces. Using groupoid techniques, we prove that this is always the case for shifts of finite type. This generalises a result of Matsumoto and Matui from the irreducible to the general case. We also prove that a pair of one-sided shift spaces of finite type are continuously orbit equivalent if and only if their groupoids are isomorphic, and that the corresponding two-sided shifts are flow equivalent if and only if the groupoids are stably isomorphic. As applications we show that two finite directed graphs with no sinks and no sources are move equivalent if and only if the corresponding graph $C*$-algebras are stably isomorphic by a diagonal-preserving isomorphism (if and only if the corresponding Leavitt path algebras are stably isomorphic by a diagonal-preserving isomorphism), and that two topological Markov chains are flow equivalent if and only if there is a diagonal-preserving isomorphism between the stabilisations of the corresponding Cuntz-Krieger algebras (the latter generalises a result of Matsumoto and Matui about irreducible topological Markov chains to a result about general topological Markov chains). We also show that for general shift spaces, strongly continuous orbit equivalence implies two-sided conjugacy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.