Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

C*-algebras, groupoids and covers of shift spaces (1910.01938v2)

Published 4 Oct 2019 in math.OA

Abstract: To every one-sided shift space $\mathsf{X}$ we associate a cover $\tilde{\mathsf{X}}$, a groupoid $\mathcal{G}{\mathsf{X}}$ and a $\mathrm{C*}$-algebra $\mathcal{O}{\mathsf{X}}$. We characterize one-sided conjugacy, eventual conjugacy and (stabilizer preserving) continuous orbit equivalence between $\mathsf{X}$ and $\mathsf{Y}$ in terms of isomorphism of $\mathcal{G}{\mathsf{X}}$ and $\mathcal{G}{\mathsf{Y}}$, and diagonal preserving $*$-isomorphism of $\mathcal{O}{\mathsf{X}}$ and $\mathcal{O}{\mathsf{Y}}$. We also characterize two-sided conjugacy and flow equivalence of the associated two-sided shift spaces $\Lambda_{\mathsf{X}}$ and $\Lambda_{\mathsf{Y}}$ in terms of isomorphism of the stabilized groupoids $\mathcal{G}{\mathsf{X}}\times \mathcal{R}$ and $\mathcal{G}{\mathsf{Y}}\times \mathcal{R}$, and diagonal preserving $*$-isomorphism of the stabilized $\mathrm{C*}$-algebras $\mathcal{O}{\mathsf{X}}\otimes \mathbb{K}$ and $\mathcal{O}{\mathsf{Y}}\otimes \mathbb{K}$. Our strategy is to lift relations on the shift spaces to similar relations on the covers. Restricting to the class of sofic shifts whose groupoids are effective, we show that it is possible to recover the continuous orbit equivalence class of $\mathsf{X}$ from the pair $(\mathcal{O}{\mathsf{X}}, C(\mathsf{X}))$, and the flow equivalence class of $\Lambda{\mathsf{X}}$ from the pair $(\mathcal{O}_{\mathsf{X}}\otimes \mathbb{K}, C(\mathsf{X})\otimes c_0)$. In particular, continuous orbit equivalence implies flow equivalence for this class of shift spaces.

Summary

We haven't generated a summary for this paper yet.