Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Push vs. Pull-Based Loop Fusion in Query Engines (1610.09166v1)

Published 28 Oct 2016 in cs.DB and cs.PL

Abstract: Database query engines use pull-based or push-based approaches to avoid the materialization of data across query operators. In this paper, we study these two types of query engines in depth and present the limitations and advantages of each engine. Similarly, the programming languages community has developed loop fusion techniques to remove intermediate collections in the context of collection programming. We draw parallels between the DB and PL communities by demonstrating the connection between pipelined query engines and loop fusion techniques. Based on this connection, we propose a new type of pull-based engine, inspired by a loop fusion technique, which combines the benefits of both approaches. Then we experimentally evaluate the various engines, in the context of query compilation, for the first time in a fair environment, eliminating the biasing impact of ancillary optimizations that have traditionally only been used with one of the approaches. We show that for realistic analytical workloads, there is no considerable advantage for either form of pipelined query engine, as opposed to what recent research suggests. Also, by using microbenchmarks we show that our proposed engine dominates the existing engines by combining the benefits of both.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.