Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A New Frontier for Pull-Based Graph Processing (1903.07754v1)

Published 18 Mar 2019 in cs.DC

Abstract: The trade-off between pull-based and push-based graph processing engines is well-understood. On one hand, pull-based engines can achieve higher throughput because their workloads are read-dominant, rather than write-dominant, and can proceed without synchronization between threads. On the other hand, push-based engines are much better able to take advantage of the frontier optimization, which leverages the fact that often only a small subset of the graph needs to be accessed to complete an iteration of a graph processing application. Hybrid engines attempt to overcome this trade-off by dynamically switching between push and pull, but there are two key disadvantages with this approach. First, applications must be implemented twice (once for push and once for pull), and second, processing throughput is reduced for iterations that run with push. We propose a radically different solution: rebuild the frontier optimization entirely such that it is well-suited for a pull-based engine. In doing so, we remove the only advantage that a push-based engine had over a pull-based engine, making it possible to eliminate the push-based engine entirely. We introduce Wedge, a pull-only graph processing framework that transforms the traditional source-oriented vertex-based frontier into a pull-friendly format called the Wedge Frontier. The transformation itself is expensive even when parallelized, so we introduce two key optimizations to make it practical. First, we perform the transformation only when the resulting Wedge Frontier is sufficiently sparse. Second, we coarsen the granularity of the representation of elements in the Wedge Frontier. These optimizations respectively improve Wedge's performance by up to 5x and 2x, enabling it to outperform Grazelle, Ligra, and GraphMat respectively by up to 2.8x, 4.9x, and 185.5x.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube