Papers
Topics
Authors
Recent
2000 character limit reached

SOL: A Library for Scalable Online Learning Algorithms

Published 28 Oct 2016 in cs.LG and stat.ML | (1610.09083v1)

Abstract: SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and developers, as well as comprehensive documents for both beginners and advanced users. SOL is not only a practical machine learning toolbox, but also a comprehensive experimental platform for online learning research. Experiments demonstrate that SOL is highly efficient and scalable for large-scale machine learning with high-dimensional data.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.