Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability analysis of the numerical Method of characteristics applied to a class of energy-preserving systems. Part I: Periodic boundary conditions

Published 28 Oct 2016 in cs.NA | (1610.09079v2)

Abstract: We study numerical (in)stability of the Method of characteristics (MoC) applied to a system of non-dissipative hyperbolic partial differential equations (PDEs) with periodic boundary conditions. We consider three different solvers along the characteristics: simple Euler (SE), modified Euler (ME), and Leap-frog (LF). The two former solvers are well known to exhibit a mild, but unconditional, numerical instability for non-dissipative ordinary differential equations (ODEs). They are found to have a similar (or stronger, for the MoC-ME) instability when applied to non-dissipative PDEs. On the other hand, the LF solver is known to be stable when applied to non-dissipative ODEs. However, when applied to non-dissipative PDEs within the MoC framework, it was found to have by far the strongest instability among all three solvers. We also comment on the use of the fourth-order Runge--Kutta solver within the MoC framework.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.